Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895051

RESUMO

The root-colonizing endophytic fungus Piriformospora indica promotes the root and shoot growth of its host plants. We show that the growth promotion of Arabidopsis thaliana leaves is abolished when the seedlings are grown on media with nitrogen (N) limitation. The fungus neither stimulated the total N content nor did it promote 15NO3- uptake from agar plates to the leaves of the host under N-sufficient or N-limiting conditions. However, when the roots were co-cultivated with 15N-labelled P. indica, more labels were detected in the leaves of N-starved host plants but not in plants supplied with sufficient N. Amino acid and primary metabolite profiles, as well as the expression analyses of N metabolite transporter genes suggest that the fungus alleviates the adaptation of its host from the N limitation condition. P. indica alters the expression of transporter genes, which participate in the relocation of NO3-, NH4+ and N metabolites from the roots to the leaves under N limitation. We propose that P. indica participates in the plant's metabolomic adaptation against N limitation by delivering reduced N metabolites to the host, thus alleviating metabolic N starvation responses and reprogramming the expression of N metabolism-related genes.


Assuntos
Arabidopsis , Basidiomycota , Arabidopsis/metabolismo , Plântula/metabolismo , Endófitos/metabolismo , Nitrogênio/metabolismo , Basidiomycota/fisiologia , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983071

RESUMO

Plants are sessile organisms that face environmental threats throughout their life cycle, but increasing global warming poses an even more existential threat. Despite these unfavorable circumstances, plants try to adapt by developing a variety of strategies coordinated by plant hormones, resulting in a stress-specific phenotype. In this context, ethylene and jasmonates (JAs) present a fascinating case of synergism and antagonism. Here, Ethylene Insensitive 3/Ethylene Insensitive-Like Protein1 (EIN3/EIL1) and Jasmonate-Zim Domain (JAZs)-MYC2 of the ethylene and JAs signaling pathways, respectively, appear to act as nodes connecting multiple networks to regulate stress responses, including secondary metabolites. Secondary metabolites are multifunctional organic compounds that play crucial roles in stress acclimation of plants. Plants that exhibit high plasticity in their secondary metabolism, which allows them to generate near-infinite chemical diversity through structural and chemical modifications, are likely to have a selective and adaptive advantage, especially in the face of climate change challenges. In contrast, domestication of crop plants has resulted in change or even loss in diversity of phytochemicals, making them significantly more vulnerable to environmental stresses over time. For this reason, there is a need to advance our understanding of the underlying mechanisms by which plant hormones and secondary metabolites respond to abiotic stress. This knowledge may help to improve the adaptability and resilience of plants to changing climatic conditions without compromising yield and productivity. Our aim in this review was to provide a detailed overview of abiotic stress responses mediated by ethylene and JAs and their impact on secondary metabolites.


Assuntos
Etilenos , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Etilenos/metabolismo , Plantas/metabolismo , Estresse Fisiológico
3.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834499

RESUMO

Plants are constantly exposed to a variety of different environmental stresses, including drought, salinity, and elevated temperatures. These stress cues are assumed to intensify in the future driven by the global climate change scenario which we are currently experiencing. These stressors have largely detrimental effects on plant growth and development and, therefore, put global food security in jeopardy. For this reason, it is necessary to expand our understanding of the underlying mechanisms by which plants respond to abiotic stresses. Especially boosting our insight into the ways by which plants balance their growth and their defense programs appear to be of paramount importance, as this may lead to novel perspectives that can pave the way to increase agricultural productivity in a sustainable manner. In this review, our aim was to present a detailed overview of different facets of the crosstalk between the antagonistic plant hormones abscisic acid (ABA) and auxin, two phytohormones that are the main drivers of plant stress responses, on the one hand, and plant growth, on the other.


Assuntos
Ácido Abscísico , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Plantas , Estresse Fisiológico , Transdução de Sinais
4.
Plant Cell Environ ; 45(12): 3387-3398, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36180415

RESUMO

Environmental stresses can compromise the interactions of plants with beneficial microbes. In the present review, experimental results showing that stresses negatively affect the abundance and/or functionality of plant beneficial microbes are summarized. It is proposed that the environmental interference of these plant-microbe interactions is explained by the stress-mediated induction of plant signalling pathways associated with defence hormones and reactive oxygen species. These plant responses are recognized to regulate beneficial microbes within plants. The direct negative effect of stresses on microbes may also contribute to the environmental regulation of these plant mutualisms. It is also posited that, in stress situations, beneficial microbes harbour mechanisms that contribute to maintain the mutualistic associations. Beneficial microbes produce effector proteins and increase the antioxidant levels in plants that counteract the detrimental effects of plant stress responses on them. In addition, they deliver specific stress-protective mechanisms that assist to their plant hosts to mitigate the negative effects of stresses. Our study contributes to understanding how environmental stresses affect plant-microbe interactions and highlights why beneficial microbes can still deliver benefits to plants in stressful environments.


Assuntos
Plantas , Simbiose , Plantas/metabolismo , Estresse Fisiológico/fisiologia
5.
Front Microbiol ; 13: 939955, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090118

RESUMO

Strawberry is one of the most widely consumed fruit, but this crop is highly susceptible to drought, a condition strongly associated with climate change, causing economic losses due to the lower product quality. In this context, plant root-associated fungi emerge as a new and novel strategy to improve crop performance under water-deficiency stress. This study aimed to investigate the supplementation of two Antarctic vascular plant-associated fungal endophytes, Penicillium brevicompactum and Penicillium chrysogenum, in strawberry plants to develop an efficient, effective, and ecologically sustainable approach for the improvement of plant performance under drought stress. The symbiotic association of fungal endophytes with strawberry roots resulted in a greater shoot and root biomass production, higher fruit number, and an enhanced plant survival rate under water-limiting conditions. Inoculation with fungal endophytes provokes higher photosynthetic efficiency, lower lipid peroxidation, a modulation in antioxidant enzymatic activity, and increased proline content in strawberry plants under drought stress. In conclusion, promoting beneficial symbiosis between plants and endophytes can be an eco-friendly strategy to cope with drought and help to mitigate the impact of diverse negative effects of climate change on crop production.

6.
Plant Cell Environ ; 45(11): 3367-3382, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35984078

RESUMO

Calcium is an important second messenger in plants. The activation of Ca2+ signalling cascades is critical in the activation of adaptive processes in response to environmental stimuli. Root colonization by the growth promoting endophyte Serendipita indica involves the increase of cytosolic Ca2+ levels in Arabidopsis thaliana. Here, we investigated transcriptional changes in Arabidopsis roots during symbiosis with S. indica. RNA-seq profiling disclosed the induction of Calcineurin B-like 7 (CBL7) during early and later phases of the interaction. Consistently, reverse genetic evidence highlighted the functional relevance of CBL7 and tested the involvement of a CBL7-CBL-interacting protein kinase 13 signalling pathway. The loss-of-function of CBL7 abolished the growth promoting effect and affected root colonization. The transcriptomics analysis of cbl7 revealed the involvement of this Ca2+ sensor in activating plant defense responses. Furthermore, we report on the contribution of CBL7 to potassium transport in Arabidopsis. We analysed K+ contents in wild-type and cbl7 plants and observed a significant increase of K+ in roots of cbl7 plants, while shoot tissues demonstrated K+ depletion. Taken together, our work associates CBL7 with an important role in the mutual interaction between Arabidopsis and S. indica and links CBL7 to K+ transport.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Basidiomycota , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Basidiomycota/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Calcineurina/farmacologia , Cálcio/metabolismo , Endófitos/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Raízes de Plantas/metabolismo , Plantas/metabolismo , Potássio/metabolismo , Proteínas Quinases/metabolismo , Simbiose
7.
Front Oncol ; 12: 881439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033533

RESUMO

Background: Boluses are routinely used in radiotherapy to modify surface doses. Nevertheless, considerable dose discrepancies may occur in some cases due to fit inaccuracy of commercially available standard flat boluses. Moreover, due to the simple geometric design of conventional boluses, also surrounding healthy skin areas may be unintentionally covered, resulting in the unwanted dose buildup. With the fused deposition modeling (FDM) technique, there is a simple and possibly cost-effective way to solve these problems in routine clinical practice. This paper presents a procedure of self-manufacturing bespoke patient-specific silicone boluses and the evaluation of buildup and fit accuracy in comparison to standard rectangular commercially available silicone boluses. Methods: 3D-conformal silicone boluses were custom-built to cover the surgical scar region of 25 patients who received adjuvant radiotherapy of head and neck cancer at the University Hospital Würzburg. During a standard CT-based planning procedure, a 5-mm-thick 3D bolus contour was generated to cover the radiopaque marked surgical scar with an additional safety margin. From these digital contours, molds were 3D printed and poured with silicone. Dose measurements for both types of boluses were performed with radiochromic films (EBT3) at three points per patient-at least one aimed to be in the high-dose area (scar) and one in the lower-dose area (spared healthy skin). Surface-bolus distance, which ideally should not be present, was determined from cone-beam CT performed for positioning control. The dosimetric influence of surface-bolus distance was also determined on slab phantom for different field sizes. The trial was performed with hardware that may be routinely available in every radiotherapy department, with the exception of the 3D printer. The required number of patients was determined based on the results of preparatory measurements with the help of the statistical consultancy of the University of Würzburg. The number of measuring points represents the total number of patients. Results: In the high-dose area of the scar, there was a significantly better intended dose buildup of 2.45% (95%CI 0.0014-0.0477, p = 0.038, N = 30) in favor of a 3D-conformal bolus. Median distances between the body surface and bolus differed significantly between 3D-conformal and commercially available boluses (3.5 vs. 7.9 mm, p = 0.001). The surface dose at the slab phantom did not differ between commercially available and 3D-conformal boluses. Increasing the surface-bolus distance from 5 to 10 mm decreased the surface dose by approximately 2% and 11% in the 6 × 6- and 3 × 3-cm2 fields, respectively. In comparison to the commercially available bolus, an unintended dose buildup in the healthy skin areas was reduced by 25.9% (95%CI 19.5-32.3, p < 0.01, N = 37) using the 3D-conformal bolus limited to the region surrounding the surgical scar. Conclusions: Using 3D-conformal boluses allows a comparison to the commercially available boluses' dose buildup in the covered areas. Smaller field size is prone to a larger surface-bolus distance effect. Higher conformity of 3D-conformal boluses reduces this effect. This may be especially relevant for volumetric modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) techniques with a huge number of smaller fields. High conformity of 3D-conformal boluses reduces an unintended dose buildup in healthy skin. The limiting factor in the conformity of 3D-conformal boluses in our setting was the immobilization mask, which was produced primarily for the 3D boluses. The mask itself limited tight contact of subsequently produced 3D-conformal boluses to the mask-covered body areas. In this respect, bolus adjustment before mask fabrication will be done in the future setting.

8.
Front Plant Sci ; 13: 928386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812959

RESUMO

The accumulation of the auxin precursor indole-3-acetamide (IAM) in the ami1 mutant has recently been reported to reduce plant growth and to trigger abiotic stress responses in Arabidopsis thaliana. The observed response includes the induction of abscisic acid (ABA) biosynthesis through the promotion of NCED3 expression. The mechanism by which plant growth is limited, however, remained largely unclear. Here, we investigated the transcriptional responses evoked by the exogenous application of IAM using comprehensive RNA-sequencing (RNA-seq) and reverse genetics approaches. The RNA-seq results highlighted the induction of a small number of genes, including the R2R3 MYB transcription factor genes MYB74 and MYB102. The two MYB factors are known to respond to various stress cues and to ABA. Consistent with a role as negative plant growth regulator, conditional MYB74 overexpressor lines showed a considerable growth reduction. RNA-seq analysis of MYB74 mutants indicated an association of MYB74 with responses to osmotic stress, water deprivation, and seed development, which further linked MYB74 with the observed ami1 osmotic stress and seed phenotype. Collectively, our findings point toward a role for MYB74 in plant growth control and in responses to abiotic stress stimuli.

9.
Plant Physiol Biochem ; 168: 465-476, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34717178

RESUMO

Expansins are proteins involved in cell wall metabolism that play an important role in plant growth, development, fruit ripening and abiotic stress tolerance. In the present study, we analyzed putative expansins that respond to drought stress. Five expansin genes were identified in cDNA libraries isolated from Colobanthus quitensis gown either with or without endophytic fungi under hydric stress. A differential transcript abundance was observed by qPCR analysis upon drought stress. To compare these expansin genes, and to suggest a possible mechanism of action at the molecular level, the structural model of the deduced proteins was obtained by comparative modeling methodology. The structures showed two domains and an open groove on the surface of the proteins was observed in the five structural models. The proteins were evaluated in terms of their protein-ligand interactions using four different ligands. The results suggested differences in their mode of protein-ligand interaction, in particular concerning the residues involved in the protein-ligand interaction. The presented evidence supports the participation of some members of the expansin multiprotein family in the response to drought stress in C. quitensis and suggest that the response is modulated by endophytic fungi.


Assuntos
Caryophyllaceae , Fungos não Classificados , Regiões Antárticas , Secas , Endófitos , Proteínas de Plantas/genética
10.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575927

RESUMO

The indole-3-pyruvic acid pathway is the main route for auxin biosynthesis in higher plants. Tryptophan aminotransferases (TAA1/TAR) and members of the YUCCA family of flavin-containing monooxygenases catalyze the conversion of l-tryptophan via indole-3-pyruvic acid to indole-3-acetic acid (IAA). It has been described that jasmonic acid (JA) locally produced in response to mechanical wounding triggers the de novo formation of IAA through the induction of two YUCCA genes, YUC8 and YUC9. Here, we report the direct involvement of a small number of basic helix-loop-helix transcription factors of the MYC family in this process. We show that the JA-mediated regulation of the expression of the YUC8 and YUC9 genes depends on the abundance of MYC2, MYC3, and MYC4. In support of this observation, seedlings of myc knockout mutants displayed a strongly reduced response to JA-mediated IAA formation. Furthermore, transactivation assays provided experimental evidence for the binding of MYC transcription factors to a particular tandem G-box motif abundant in the promoter regions of YUC8 and YUC9, but not in the promoters of the other YUCCA isogenes. Moreover, we demonstrate that plants that constitutively overexpress YUC8 and YUC9 show less damage after spider mite infestation, thereby underlining the role of auxin in plant responses to biotic stress signals.


Assuntos
Proteínas de Arabidopsis/genética , Ciclopentanos/metabolismo , Oxigenases de Função Mista/genética , Motivos de Nucleotídeos , Oxilipinas/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Estresse Fisiológico/genética , Fatores de Ligação G-Box , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Ligação Proteica
11.
Methods Mol Biol ; 2354: 143-154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34448159

RESUMO

The potato is among the most important food crops in the world and of incalculable value for global food security. In 2012, the crop area for potato in Northern and Western Europe reached almost 1 million ha and a production of over 37 million tons with an average yield between 18 and 45 tons/ha. However, current potato production is put in jeopardy by a number of important biotic stress factors including late blight (Phytophthora infestans), which was responsible for the disastrous Irish potato famine during 1843-1845. P. infestans shows a remarkable capacity for adaptation with respect to host genotype and applied fungicides. This has made disease management to become more and more difficult and put substantial emphasis on gaining more detailed insight into the molecular bases of plant pathogen interactions, in order to find more sophisticated ways for biological pest control. The plant hormones jasmonic acid (JA) and salicylic acid (SA) play central roles in the regulation of plant responses to biotic foes. In addition, other phytohormones including auxins and abscisic acid (ABA) have also been associated with plant defense responses. For this reason, the parallel analysis of multiple plant hormones in small tissue amounts represents an important field of research in contemporary plant sciences. Here, we describe a highly sensitive and accurate method for the quantitative analysis of ABA, JA, SA, and indole-3-acetic acid in potato plants by gas chromatography-coupled tandem mass spectrometry (GC-MS/MS).


Assuntos
Solanum tuberosum , Ácido Abscísico , Cromatografia Gasosa-Espectrometria de Massas , Doenças das Plantas , Reguladores de Crescimento de Plantas , Ácido Salicílico , Estresse Fisiológico , Espectrometria de Massas em Tandem
12.
Biomolecules ; 11(8)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439873

RESUMO

The diversification of land plants largely relies on their ability to cope with constant environmental fluctuations, which negatively impact their reproductive fitness and trigger adaptive responses to biotic and abiotic stresses. In this limiting landscape, cumulative research attention has centred on deepening the roles of major phytohormones, mostly auxins, together with brassinosteroids, jasmonates, and abscisic acid, despite the signaling networks orchestrating the crosstalk among them are so far only poorly understood. Accordingly, this review focuses on the Arabidopsis Amidase Signature (AS) superfamily members, with the aim of highlighting the hitherto relatively underappreciated functions of AMIDASE1 (AMI1) and FATTY ACID AMIDE HYDROLASE (FAAH), as comparable coordinators of the growth-defense trade-off, by balancing auxin and ABA homeostasis through the conversion of their likely bioactive substrates, indole-3-acetamide and N-acylethanolamine.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etanolaminas/metabolismo , Ácidos Indolacéticos/metabolismo , Amidoidrolases/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670805

RESUMO

The major auxin, indole-3-acetic acid (IAA), is associated with a plethora of growth and developmental processes including embryo development, expansion growth, cambial activity, and the induction of lateral root growth. Accumulation of the auxin precursor indole-3-acetamide (IAM) induces stress related processes by stimulating abscisic acid (ABA) biosynthesis. How IAM signaling is controlled is, at present, unclear. Here, we characterize the ami1rooty double mutant, that we initially generated to study the metabolic and phenotypic consequences of a simultaneous genetic blockade of the indole glucosinolate and IAM pathways in Arabidopsisthaliana. Our mass spectrometric analyses of the mutant revealed that the combination of the two mutations is not sufficient to fully prevent the conversion of IAM to IAA. The detected strong accumulation of IAM was, however, recognized to substantially impair seed development. We further show by genome-wide expression studies that the double mutant is broadly affected in its translational capacity, and that a small number of plant growth regulating transcriptional circuits are repressed by the high IAM content in the seed. In accordance with the previously described growth reduction in response to elevated IAM levels, our data support the hypothesis that IAM is a growth repressing counterpart to IAA.


Assuntos
Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Biogênese de Organelas , Ribossomos/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Germinação , Ácidos Indolacéticos/química , Redes e Vias Metabólicas , Modelos Moleculares , Mutação/genética , Fenótipo , Biossíntese de Proteínas/genética , Reprodutibilidade dos Testes , Sementes/metabolismo , Transcrição Gênica
14.
J Exp Bot ; 72(2): 459-475, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33068437

RESUMO

The evolutionary success of plants relies to a large extent on their extraordinary ability to adapt to changes in their environment. These adaptations require that plants balance their growth with their stress responses. Plant hormones are crucial mediators orchestrating the underlying adaptive processes. However, whether and how the growth-related hormone auxin and the stress-related hormones jasmonic acid, salicylic acid, and abscisic acid (ABA) are coordinated remains largely elusive. Here, we analyse the physiological role of AMIDASE 1 (AMI1) in Arabidopsis plant growth and its possible connection to plant adaptations to abiotic stresses. AMI1 contributes to cellular auxin homeostasis by catalysing the conversion of indole-acetamide into the major plant auxin indole-3-acetic acid. Functional impairment of AMI1 increases the plant's stress status rendering mutant plants more susceptible to abiotic stresses. Transcriptomic analysis of ami1 mutants disclosed the reprogramming of a considerable number of stress-related genes, including jasmonic acid and ABA biosynthesis genes. The ami1 mutants exhibit only moderately repressed growth but an enhanced ABA accumulation, which suggests a role for AMI1 in the crosstalk between auxin and ABA. Altogether, our results suggest that AMI1 is involved in coordinating the trade-off between plant growth and stress responses, balancing auxin and ABA homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas
15.
Plant J ; 104(3): 645-661, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32772469

RESUMO

Whereas the activation of resistance (R) proteins has been intensively studied, the downstream signaling mechanisms leading to the restriction of the pathogen remain mostly unknown. We studied the immunity network response conditioned by the potato Ny-1 gene against potato virus Y. We analyzed the processes in the cell death zone and surrounding tissue on the biochemical and gene expression levels in order to reveal the spatiotemporal regulation of the immune response. We show that the transcriptional response in the cell death zone and surrounding tissue is dependent on salicylic acid (SA). For some genes the spatiotemporal regulation is completely lost in the SA-deficient line, whereas other genes show a different response, indicating multiple connections between hormonal signaling modules. The induction of NADPH oxidase RBOHD expression occurs specifically on the lesion border during the resistance response. In plants with silenced RBOHD, the functionality of the resistance response is perturbed and the spread of the virus is not arrested at the site of infection. RBOHD is required for the spatial accumulation of SA, and conversely RBOHD is under the transcriptional regulation of SA. Using spatially resolved RNA-seq, we also identified spatial regulation of an UDP-glucosyltransferase, another component in feedback activation of SA biosynthesis, thus deciphering a novel aspect of resistance signaling.


Assuntos
Potyvirus/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potyvirus/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo
16.
J Exp Bot ; 71(13): 3865-3877, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31976537

RESUMO

Global climate change is arguably one of the biggest threats of modern times and has already led to a wide range of impacts on the environment, economy, and society. Owing to past emissions and climate system inertia, global climate change is predicted to continue for decades even if anthropogenic greenhouse gas emissions were to stop immediately. In many regions, such as central Europe and the Mediterranean region, the temperature is likely to rise by 2-5 °C and annual precipitation is predicted to decrease. Expected heat and drought periods followed by floods, and unpredictable growing seasons, are predicted to have detrimental effects on agricultural production systems, causing immense economic losses and food supply problems. To mitigate the risks of climate change, agricultural innovations counteracting these effects need to be embraced and accelerated. To achieve maximum improvement, the required agricultural innovations should not focus only on crops but rather pursue a holistic approach including the entire ecosystem. Over millions of years, plants have evolved in close association with other organisms, particularly soil microbes that have shaped their evolution and contemporary ecology. Many studies have already highlighted beneficial interactions among plants and the communities of microorganisms with which they coexist. Questions arising from these discoveries are whether it will be possible to decipher a common molecular pattern and the underlying biochemical framework of interspecies communication, and whether such knowledge can be used to improve agricultural performance under environmental stress conditions. In this review, we summarize the current knowledge of plant interactions with fungal endosymbionts found in extreme ecosystems. Special attention will be paid to the interaction of plants with the symbiotic root-colonizing endophytic fungus Serendipita indica, which has been developed as a model system for beneficial plant-fungus interactions.


Assuntos
Mudança Climática , Ecossistema , Basidiomycota , Europa (Continente) , Fungos
17.
Int J Mol Sci ; 20(12)2019 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-31234561

RESUMO

The channeling of metabolites is an essential step of metabolic regulation in all living organisms. Multifunctional enzymes with defined domains for metabolite compartmentalization are rare, but in many cases, larger assemblies forming multimeric protein complexes operate in defined metabolic shunts. In Arabidopsis thaliana, a multimeric complex was discovered that contains a 13-lipoxygenase and allene oxide synthase (AOS) as well as allene oxide cyclase. All three plant enzymes are localized in chloroplasts, contributing to the biosynthesis of jasmonic acid (JA). JA and its derivatives act as ubiquitous plant defense regulators in responses to both biotic and abiotic stresses. AOS belongs to the superfamily of cytochrome P450 enzymes and is named CYP74A. Another CYP450 in chloroplasts, hydroperoxide lyase (HPL, CYP74B), competes with AOS for the common substrate. The products of the HPL reaction are green leaf volatiles that are involved in the deterrence of insect pests. Both enzymes represent non-canonical CYP450 family members, as they do not depend on O2 and NADPH-dependent CYP450 reductase activities. AOS and HPL activities are crucial for plants to respond to different biotic foes. In this mini-review, we aim to summarize how plants make use of the LOX2-AOS-AOC2 complex in chloroplasts to boost JA biosynthesis over volatile production and how this situation may change in plant communities during mass ingestion by insect pests.


Assuntos
Aldeído Liases/metabolismo , Arabidopsis/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência à Doença , Oxirredutases Intramoleculares/metabolismo , Aldeído Liases/química , Aldeído Liases/genética , Sequência de Aminoácidos , Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Resistência à Doença/genética , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/genética , Redes e Vias Metabólicas , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Oxilipinas/metabolismo , Desenvolvimento Vegetal/genética , Ligação Proteica , Relação Estrutura-Atividade
18.
J Exp Bot ; 70(5): 1483-1495, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30690555

RESUMO

Oxygenated membrane fatty acid derivatives termed oxylipins play important roles in plant defense against biotic and abiotic cues. Plants challenged by insect pests, for example, synthesize a blend of different defense compounds that include volatile aldehydes and jasmonic acid (JA), among others. Because all oxylipins are derived from the same pathway, we investigated how their synthesis might be regulated, focusing on two closely related atypical cytochrome P450 enzymes designated CYP74A and CYP74B, respectively, allene oxide synthase (AOS) and hydroperoxide lyase (HPL). These enzymes compete for the same substrate but give rise to different products: the final product of the AOS branch of the oxylipin pathway is JA, while those of the HPL branch comprise volatile aldehydes and alcohols. AOS and HPL are plastid envelope enzymes in Arabidopsis thaliana but accumulate at different locations. Biochemical experiments identified AOS as a constituent of complexes also containing lipoxygenase 2 (LOX2) and allene oxide cyclase (AOC), which catalyze consecutive steps in JA precursor biosynthesis, while excluding the concurrent HPL reaction. Based on published X-ray data, the structure of this complex was modelled and amino acids involved in catalysis and subunit interactions predicted. Genetic studies identified the microRNA 319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes and CORONATINE INSENSITIVE 1 (COI1) as controlling JA production through the LOX2-AOS-AOC2 complex. Together, our results define a molecular branch point in oxylipin biosynthesis that allows fine-tuning of the plant's defense machinery in response to biotic and abiotic stimuli.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Sistema Enzimático do Citocromo P-450/genética , Oxigenases de Função Mista/genética , Oxilipinas/metabolismo , Plastídeos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases de Função Mista/metabolismo
19.
Plant Physiol Biochem ; 135: 215-223, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30576980

RESUMO

Plants respond to the loss of vertical growth re-orientating their affected organs. In trees, this phenomenon has received the scientific attention due to its importance for the forestry industry. Nowadays it is accepted that auxin distribution is involved in the modulation of the tilting response, but how this distribution is controlled is not fully clear. Auxin transporters that determine the spatio-temporal auxin distribution in radiate pine seedlings exposed to 45° of tilting were identified. Additionally, based on indications for an intimate plant hormone crosstalk in this process, IAA and JA contents were evaluated. The experiments revealed that expression of the auxin transporters was down-regulated in the upper half of the tilted stem, while being induced in the lower half. Moreover, transporter-coding genes were first induced at the apical zone of the stem. IAA was consistently redistributed toward the lower half, which is in accordance with the expression profile of the auxin transporters. In contrast, JA was mainly accumulated in the upper half of tilted stems. Finally, lignin content and monomeric composition were analyzed in both sides of stem and along the time course of tilting. As expected, lignin accumulation was higher at the lower half of stem at longer times of tilting. However, the most marked difference was the accumulation of the H-lignin monomer in the lower half, while the G-lignin unit was more dominant in the upper half. Here, we provide detailed insight in the distribution of IAA and JA, affecting the lignin composition during the tilting response in Pinus radiata seedlings.


Assuntos
Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Lignina/biossíntese , Oxilipinas/metabolismo , Pinus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Caules de Planta/metabolismo , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Pinus/genética , Pinus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Plântula/crescimento & desenvolvimento , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA